INSTRUKCJA OBSŁUGI Piezo-Acquisition System PAQ-16000D

© EC ELECTRONICS

© Copyright

Niniejsze opracowanie jest własnością firmy EC Electronics, która zastrzega sobie wszelkie prawa, włącznie z prawami patentowymi i wzorów użytkowych.

Powielanie lub inne zastosowanie niniejszego opracowania, a także jego części, jak również przekazanie osobom trzecim, podlega naszemu pisemnemu zezwoleniu.

SPIS TREŚCI

6
6
6
6
7
8
8
8
9
9
0
0
0
0
1
1
2
2
4
4

SPIS ILUSTRACJI

ILUSTRACJA 1: PANEL PRZEDNI I TYLNY URZĄDZENIA PAQ-16000D	7
ILUSTRACJA 2: SCHEMAT BLOKOWY URZĄDZENIA PAQ-16000D	8
ILUSTRACJA 3: OKNO PROGRAMU OBSŁUGUJĄCEGO PAQ-16000D	11
ILUSTRACJA 4: STANOWISKO POMIAROWE	12
ILUSTRACJA 5: ROZMIESZCZENIE PIEZOELEMENTÓW NA PŁYCIE MIEDZIANEJ	12
ILUSTRACJA 6: WYJŚCIOWA PACZKA FALOWA - 10 OKRESÓW, 200 KHZ, MODULAC	JA
OKNEM HANNINGA	13
ILUSTRACJA 7: ODPOWIEDŹ CZASOWA PIEZOCZUJNIKÓW	13

I. INFORMACJE WSTĘPNE

1. Przeznaczenie

Urządzenie PAQ-16000D jest drugą wersją układu do generowania i akwizycji fal sprężystych. Narzędzie służy do badania stanu cienkich płyt za pomocą generowania paczek falowych (paczki lamba) oraz zebrania sygnałów zawierających informację o odpowiedzi badanego obiektu – wymuszenie oraz pomiary reakcji płyty realizowane jest przez piezoelementy. Na podstawie odpowiedzi badanego obiektu można wykryć zarówno zewnętrzne, jak i wewnętrzne uszkodzenia płyty. Dane po zakończeniu eksperymentu wysyłane są przez interfejs USB do komputera PC i tam mogą być wyświetlone oraz analizowane w środowisku MatLab®. Ponadto, urządzenie jest wyposażone w złącza BNC, które umożliwiają wizualizację każdego kanału w oscyloskopie.

2. Parametry

PAQ-16000D ma następujące parametry:

∢	par	ametry ogólne:
	•	zasilanie115/230 VAC, 60/50 Hz
	•	interfejs komunikacyjnyUSB
	•	środowisko pracy MatLab® lub niezależna aplikacja
	•	generatory piezoelektryczneCMAR03, 16 sztuk, montowane bez uszkadzania struktury obiektu
	•	wymiaryrack 19" 3U
	•	waga4 kg
€	par	ametry pracy:
	•	liczba kanałów nadających/pomiarowych (razem)1/15 (16) lub 1/7 (8)
	•	regulacja amplitudy nadawanego sygnału1, 1/2, 1/4, 1/8
	•	częstotliwość paczki lamba30-350 kHz
	•	liczba okresów paczki1-16
	•	modulacje paczek falowychokno Hanninga, trójkątne, prostokątne
	•	opóźnienie między generowanymi paczkami1-4095 ms
	•	napięcie wyjścia wzmacniacza±100 V
	•	regulacja wzmocnienia toru odbiorczego1, ½, ½, ½, 1/10, 1/20, 1/40, 1/80
	•	częstotliwość próbkowania toru pomiarowego2,5 MHz
	•	przetwornik analogowo-cyfrowy24 bit

3. Montaż

Urządzenie PAQ-16000D mieści się w zestandaryzowanym racku 19" o wysokości 3U. Na panelu przednim znajdują się przyłącza wejściowe i wyjściowe 16 kanałów, ekran oraz diody sygnalizujące stan pracy. Tylny panel zawiera złącze zasilania, przełącznik napięcia zasilania, złącze USB oraz otwory na wentylatory. Montując urządzenie w szafie przemysłowej należy zapewnić dostęp do przedniego panelu (w celu swobodnego podłączania piezogeneratorów) oraz tylnego (dla podłączenia zasilania i kabla USB oraz umożliwienia przepływu powietrza chłodzącego urządzenie).

II. OPIS MECHANICZNY

1. Panel przedni

Opis panelu przedniego:

- → LCD display ekran wyświetlanie bieżących ustawień i parametrów pracy,
- → Power, PC connection, Ready, Active diody sygnalizujące stan urządzenia,
- ➔ Voltage output wyjście wzmacniacza ładunku; dla każdego kanału,
- → Piezo sensor podłączenie piezoelementu; dla każdego kanału,
- ➔ Active indicator stan aktywności piezogeneratora dioda włączona w trakcie wysyłania paczki sygnału wymuszenia; dla każdego kanału.

2. Panel tylny

Opis panelu tylnego:

- → USB port port podłączenia do komputera PC,
- ➔ 110/230V wybór napięcia zasilania,
- ➔ Power złącze zasilania z bezpiecznikiem zwłocznym w schowki pod złączem: 630 mA, 230 VAC,
- ➔ Fans wentylatory.

III. OPIS ELEKTRYCZNY

System został zbudowany w oparciu o dwie jednostki zarządzające: układ programowalny FPGA (1) oraz mikroprocesor (2). Dodatkowo urządzenie jest wyposażone w odpowiednie bloki zapewniające poprawną pracę, w szczególności część generująca paczki falowe w postaci generatora obwiedni (6), generatora częstotliwości i układu mnożącego. Zwrotny tor pomiarowy jest wyposażony we wzmacniacz ładunku, napięcia oraz przetwornik analogowo-cyfrowy (3).

Komunikacja z urządzeniem odbywa się poprzez interfejs USB i środowisko MatLab. W układzie FPGA została zaimplementowana obsługa protokołu USB. Ze względu na ilość próbkowanych danych podczas pomiaru nie jest możliwe bezpośrednie przesyłanie ich do komputera PC. Z tego powodu FPGA jest wyposażone w pamięć RAM pozwalającą na przechowanie pełnego pomiaru. Po jego zakończeniu dane są przenoszone do MatLaba® poprzez złącze USB.

Urządzenie posiada możliwość regulacji mocy generowanego jak i odbieranego sygnału. Jest to konieczne ze względu na specyfikę wykonywania pomiarów dla różnych materiałów (różne stopnie propagacji fali, itp.).

Próbkowanie A/C odbywa się z rozdzielczością 24 bitów oraz częstotliwością 2,5M próbki/s. Specyfika pomiaru przy tak dużej rozdzielczości wymaga odpowiedniego przygotowania zasilania. Z tego względu podczas pomiaru układ jest zasilany z zasilania wewnętrznego w postaci baterii. Przetwornik posiada zaimplementowany filtr anty-aliasingowy a po przetworzeniu A/C następuje cyfrowa filtra lub ustawianie odpowiedniego wzmocnienia.

Dla celów pomiarowych pasmo toru pomiarowego zostało ograniczone na 10-350kHz.

Układ FPGA Xilinx oraz mikrokontroler poza wykonywaniem zadań związanych z pomiarem zajmują się obsługą parametrów pracy urządzania.

IV. UŻYTKOWANIE

Kolejność operacji w trakcie używania układu PAQ-16000D:

1. Podłączenie do komputera

Wymiana informacji między urządzeniem PAQ-16000D a komputerem następuje poprzez interfejs USB. W celu poprawnego działania sprzętu zaleca się podłączenie systemu przed uruchomieniem komputera:

- ➔ podłączenie kabla USB,
- → instalacja sterowników Opal Kelly tylko przy pierwszym uruchomieniu,
- ➔ uruchomienie programu do obsługi urządzenia PAQ-16000D komenda "paq" w oknie komend w MatLabie®,
- → menu → Configure → Connect to device zawsze po włączeniu urządzenia PAQ-16000D),
- → menu → Configure → Select Bit File wybranie programu do układu FPGA,
- → menu → Configure → Load Bit File załadowanie programu do układu FPGA.

Jeśli plik z bitowym programem do FPGA jest umieszczony w aktualnym folderze roboczym MatLaba® wystarczy wykonać jedynie drugą operację – Load Bit File.

Po wykonaniu powyższych operacji urządzenie jest gotowe do dalszego użytkowania.

2. Podpięcie piezoelementów

Zestaw pomiarowy składa się maksymalnie z 16 elementów piezoelektrycznych z przylutowanym kablem zasilającym zakończonym złączem SMA. W celu przeprowadzenia eksperymentu należy podłączyć potrzebną ilość piezogeneratorów do odpowiednich złączy urządzenia (SMA) oraz przytwierdzić piezoelementy do badanej płyty za pomocą wosku, kaptonu lub kleju.

3. Uruchomienie

Przed włączeniem urządzenia należy koniecznie ustawić przełącznik napięcia zasilania (panel tylny) w odpowiedniej pozycji – 115/230VAC!

Włączenie PAQ-16000D powinno nastąpić po włączeniu komputera. Dzięki temu pecet poprawnie rozpozna i zainstaluje urządzenie.

4. Konfiguracja parametrów, pomiar i zbieranie danych

Operacje dotyczące ustawień i obsługi urządzenia PAQ-16000D opisane są w rozdziale V – "Konfiguracja parametrów, pomiar i zebranie danych".

5. Zakończenie pracy

Wyłączenie PAQ-16000D powinno nastąpić w stanie spoczynku systemu. Przełączenie włącznika odcina doprowadzanie zasilania do urządzenia. Ponowne uruchomienie może zostać przeprowadzone bez restartowania komputera.

V. KONFIGURACJA PARAMETRÓW, POMIAR I ZEBRANIE DANYCH

1. Program

Time delay [ms]	Windows type	Output GAIN	Input GAIN
4095 1 Actuator number 4 Number of plug in sensors	Triangle Rectangle Hanning Number of periods 100 Frequency [kHz]	I Gain 1 Gain 1/2 Gain 1/4 Gain 1/8	Gain 1 Gain 1/2 Gain 1/4 Gain 1/8 Gain 1/8 Gain 1/10 Gain 1/20

Ilustracja 3: Okno programu obsługującego PAQ-16000D

Menu programu:

- → File:
 - Save as zapisanie ostatnich pomiarów do pliku paq_data.mat,
 - Exit wyjście z programu,
- → Configure:
 - Connect to device połączenie się z urządzeniem PAQ16000D,
 - Select bit file wybranie programu z parametrami eksperymentu do urządzenia,
 - Load bit file wysłanie programu z parametrami eksperymentu do urządzenia,
- ➔ Plot graficzne wyświetlenie wyników doświadczenia.

Parametry programu:

- ➔ Time delay czas w [ms], po którym są generowane paczki dla kolejnych piezoczujników,
- Actuator number numer piezoelementu, który ma być wzbudnikiem generatorem sygnału wymuszenia,
- ➔ Number of plug in sensors liczba wszystkich piezoelementów podpiętych i biorących udział w doświadczeniu – wzbudnik + czujniki,
- ➔ Windows type typ okna dla generowanej paczki wymuszenia,
- → Number of periods liczba okresów tworzących sygnał wymuszenia,
- ➔ Frequency częstotliwość w [kHz] sygnału wymuszenia,
- ➔ Output gain wzmocnienie generowanego sygnału wymuszenia,
- → Input gain wzmocnienie sygnałów pomiarowych.

Po ustawieniu parametrów doświadczenia w celu jego rozpoczęcia należy wcisnąć przycisk "Make Measurements". Po zakończeniu zbierania danych wyniki eksperymentu można wyświetlić w postaci graficznej.

2. Struktura danych

Sesja pomiarowa jest tymczasowo zapisywana w przestrzeni roboczej MatLaba® w strukturze "paq_current_data". Struktura ta zawiera rekordy poszczególnych eksperymentów z zapisanymi parametrami i danymi pomiarowymi. Po restarcie programu rozpoczynana jest nowa sesja - dane z poprzedniej są kasowane.

3. Przykładowe ustawienia i wyniki eksperymentu

Przykładowe doświadczenie dotyczy badania płyty miedzianej o wymiarach 48x100 cm. Stanowisko pomiarowe oraz piezoelementy rozmieszczone na obiekcie przedstawione są na poniższych ilustracjach:

płycie miedzianej

Element zaznaczony kolorem czerwonym został wybrany jako generator paczki falowej.

Parametry programu zostały skonfigurowane następująco:

- ➔ Actuator number 1,
- → Number of plug in sensors 4,
- ➔ Windows type Hanning,
- → Number of periods 10
- ➔ Frequency 200kHz,
- → Output gain 1,
- ➔ Input gain 1.

Paczka falowa wzbudzająca płytę o podanych parametrach miała kształt:

Ilustracja 6: Wyjściowa paczka falowa - 10 okresów, 200 kHz, modulacja oknem Hanninga

Przeprowadzone badanie dało następujące odpowiedzi czasowe czujników:

Ilustracja 7: Odpowiedź czasowa piezoczujników

Wyniki eksperymentu pokazują praktycznie równocześnie zmierzone drgania wymuszenia a następnie odbite fale mechaniczne od przeszkód (w tym wypadku były to krawędzie badanej płyty). Znając charakter wymuszenia, materiału oraz wymiary obiektu można obliczyć, czy dane odbicie pochodzi z krawędzi płyty, czy też z uszkodzenia struktury (zewnętrzne lub wewnętrzne). Należy pamiętać, iż ze względu na echo oraz nachodzenie się fal mechanicznych istotne są tylko pierwsze zmierzone odbicia.

Generowanie fal sprężystych w postaci paczek falowych wiąże się z szeregiem zjawisk, które powstają w rzeczywistym układzie. Do analizy czasowej niejednorodności materiału (w szczególności pęknięć) wymagane jest skupianie mocy w jak najwęższym paśmie częstotliwości. W innym przypadku znaczną rolę zaczyna odgrywać różnica propagacji prędkości fali w danym materiale w zależności od częstotliwości.

Dla dokładniejszego zgłębienia wyników zaleca się dodatkowo analizę widmową odpowiedzi badanej płyty.

VI. BEZPIECZEŃSTWO

- UWAGA! Urządzenie jest zasilane wysokim napięciem! Należy koniecznie upewnić się o ustawionym napięciu zasilania – przełącznik na tylnym panelu.
- UWAGA! Urządzenie wysyła impulsy o wysokim napięciu podczas obsługi należy zachować szczególną ostrożność.
- UWAGA! Podczas montowania piezoelementów na płytach metalowych nie można pod żadnym pozorem zewrzeć złączy zasilających piezoelement z badanym obiektem.

VII. SKŁAD ZESTAWU

W skład zestawu PAQ-16000D wchodzą:

- → generator i akwizytor fal sprężystych PAQ-16000D,
- ➔ zestaw piezoczujników,
- ➔ sterowniki do układu FPGA,
- ➔ oprogramowanie m-pliki MatLaba[®],
- ➔ instrukcja obsługi,
- ➔ kabel zasilający,
- ➔ kabel USB.